
陈俊仕
cjuns@ustc.edu.cn

2023 Fall
计算机科学与技术学院

School of Computer Science and Technology

计算系统概论A
Introduction to Computing Systems

（CS1002A.03)

Chapter 4
The von Neumann Model

Review

nMOS transistors are used as switches to implement logic functions.

lN-type: connect to GND, turn on (with 1) to pull down to 0

lP-type: connect to +2.9V, turn on (with 0) to pull up to 1

nBasic gates: NOT, NOR, NAND

lLogic functions are usually expressed with AND, OR, and NOT

nProperties of logic gates

lCompleteness

—can implement any truth table with AND, OR, NOT

lDeMorgan's Law

—convert AND to OR by inverting inputs and output

2023/10/27 2

Review

nWe’ve touched on basic digital logic

lTransistors

lGates

lStorage (latches, flip-flops, memory)

lState machines

nBuilt some simple circuits

ladder, subtracter, adder/subtracter，Incrementer

lCounter (consisting of register and incrementer)

lHard-coded traffic sign state machine

lProgrammable traffic sign state machine

nUp next: a computer as a state machine

2023/10/27 3

Today

nGreat Idea #2: Stored program computer(Von Neumann Model--A Machine Structure

lBasic Components for a machine

lThe LC-3: An Example von Neumann Machine

lInstruction Processing

2023/10/27 4

Bottom up approach

Electronic System Level (ESL)Design

Motherboard Circuit Design
10 ICs/ PCB

1~50G Devices

Personal Computer:
Hardware & Software Design

1~10PCBs/System

Integrated Circuit Design
100 Modules/ IC

0.25M~20G Devices

MEMORY

CONTROL UNIT

MAR MDR

IR

PROCESSING UNIT

ALU TEMP

PC

OUTPUT
Monitor
Printer
LED
Disk

INPUT
Keyboard
Mouse
Scanner
Disk

Now, You are Here.
2023/10/27 5

Great Idea #3: Abstraction Helps Us Manage Complexity

Solve a system of equations

Gaussian
elimination

Jacobi
iterationRed-black SOR Multigrid

FORTRAN C C++ Java

Intel x86Sun SPARC IBM PowerPC

Pentium 4 Core 2 Duo AMD Athlon X2

Ripple-carry adder Carry-lookahead adder

Static CMOS Dynamic CMOS Nanomechanical

Algorithm and Data Structure

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Electronic Devices

Programming Language/Compiler

Analog/Digital Circuits

Physics

2023/10/27 6

Great Idea #4: Software and Hardware Co-design

Software
Hardware

Application

Language

Machine Architecture, ISA

Microarchitecture

Logic and IC

Device

Algorithm & Data Structure

Computer System: Layers of Abstraction

Now, You
are Here.

2023/10/27 7

From ENIAC to the Stored Program Computer1

Basic Components2

The LC-3: An Example von Neumann Machine 3

Instruction Processing4

Our First Program: A Multiplication Algorithm5

Summary6

Outline

ENIAC - The first electronic computer ,1946年

2023/10/27 9

？

ENIAC - The first electronic computer ,1946年

2023/10/27 10

？

ENIAC - The first electronic computer ,1946年

Changing the program could take days!
2023/10/27 11

Programmed by plugboard and
switches, time consuming!

The Origin of the Stored Program Computer

John von Neumann,
c. 1955
Credit: Computer
History Museum

1944: ENIAC

l Presper Eckert and John Mauchly -- first general electronic computer.

l Hard-wired program -- settings of dials and switches.

1944: Beginnings of EDVAC

l John von Neumann joined ENIAC team and proposed a stored program computer

called EDVAC

1945: John von Neumann

l John von Neumann wrote "First Draft of a Report on the EDVAC" in which he

outlined the architecture of a stored-program computer.

l failed to credit designers, ironically still gets credit

The basic structure proposed in the draft became known as the “von Neumann machine” (or
model).
l a memory, containing instructions and data
l a processing unit, for performing arithmetic and logical operations
l a control unit, for interpreting instructions

2023/10/27 12

The Stored Program Computer Architecture
(von Neumann Machine Architecture or Model)

Output
Devices

Input
Devices

Memory

Programs & Data

Memory
Data

Register

Memory
Address
Register

Central Processing Unit

Temporary
Memory

RegistersA B
Arithmetic Logic Unit

Control Unit
Instruction

Register
Program
Counter

Data & Address Bus

Control Bus

MEMORY

CONTROL UNIT

MAR MDR

IR

PROCESSING UNIT

ALU TEMP

PC

OUTPUT
Monitor
Printer
LED
Disk

INPUT
Keyboard
Mouse
Scanner
Disk

2023/10/27 13

The Stored Program Computer

Electronic storage of
programming
information and data
eliminated the need for
the more clumsy
methods of
programming, such as
punched paper tape —
a concept that has
characterized
mainstream computer
development since
1945.

EDSAC
University of Cambridge
UK, 1949

Maurice Vincent
Wilkes

2023/10/27 14

Stored program + Transistor technology

Change the program so
that you can do all
kinds of tasks on the
same hardware

The device is
smaller and faster
than a vacuum
tube

Two major inventions of the microprocessor chip

2023/10/27 15

From ENIAC to the Stored Program Computer1

Basic Components2

The LC-3: An Example von Neumann Machine 3

Instruction Processing4

Our First Program: A Multiplication Algorithm5

Summary6

Outline

von Neumann Model

2023/10/27 17

INPUT

• Keyboard
• Mouse
• Scanner
• Card reader
• Disk

MEMORY

MAR MDR

PROCESSING UNIT

ALU TEMP

PC

CONTROL UNIT

IR

OUTPUT

• Monitor
• Printer
• LED
• Disk

Memory

k x m array of stored bits (k is usually 2n)

Address

l unique (n-bit) identifier of location

Contents

l m-bit value stored in location

Basic Operations:

LOAD

l read a value from a memory location

STORE

l write a value to a memory location

2023/10/27 18

Interface to Memory

How does processing unit get data to/from memory?

MAR: Memory Address Register

MDR: Memory Data Register

To read a location (A):

1. Write the address (A) into the MAR.

2. Send a “read” signal to the memory.

3. Read the data from MDR.

To write a value (X) to a location (A):

1. Write the data (X) to the MDR.

2. Write the address (A) into the MAR.

3. Send a “write” signal to the memory.

2023/10/27 19

MEMORY

MAR MDR

Processing Unit

Functional Units

l ALU = Arithmetic and Logic Unit

l could have many functional units. some of them special-purpose

(multiply, square root, …)

l LC-3 performs ADD, AND, NOT

Registers

l Small, temporary storage

l Operands and results of functional units

l LC-3 has eight register (R0, …, R7)

Word Size

l number of bits normally processed by ALU in one instruction

l also width of registers

l LC-3 is 16 bits

2023/10/27 20

PROCESSING UNIT

ALU TEMP

Input and Output

n Devices for getting data into and out of computer memory

n Each device has its own interface, usually a set of registers like

the memory’s MAR and MDR

l LC-3 supports keyboard (input) and console (output)

l keyboard: data register (KBDR) and status register (KBSR)

l console: data register (CRTDR) and status register (CRTSR)

l frame buffer: memory-mapped pixels

n Some devices provide both input and output
l disk, network

n Program that controls access to a device is usually called a driver.

2023/10/27 21

INPUT

• Keyboard
• Mouse
• Scanner
• Card reader
• Disk

OUTPUT

• Monitor
• Printer
• LED
• Disk

Control Unit

n Orchestrates execution of the program

n Instruction Register (IR) contains the current instruction.

n Program Counter (PC) contains the address of the next instruction to be

executed.

n Control unit:

l reads an instruction from memory

— the instruction’s address is in the PC

l interprets the instruction, generating signals

that tell the other components what to do

— an instruction may take many machine cycles to complete

2023/10/27 22

PC

CONTROL UNIT

IR

From ENIAC to the Stored Program Computer1

Basic Components2

The LC-3: An Example von Neumann Machine3

Instruction Processing4

Our First Program: A Multiplication Algorithm5

Summary6

Outline

LC-3 Data Path

2023/10/27 24

SR1

16

SR2
3

SR2MUX
16

16

16

16[10:0] 16 16
SEXT

SEXT

SEXT

[8:0]

[5:0]

[4:0]
SEXT

MEM.EN,R,W

16
MEMORY

MUX MUX

MDR

…

+

16

16 16

16

ADDR1MUX

2 PCMUX +1

16

MARMUX

SEXT
[7:0]

GateMARMUX
LD.PC

16
1616

ADDR2MUX

16

LD.MDR

MUXMIO.EN

GateMDR

16

16

16

ALU
A BALUK

2
FINITE
STATE

MACHINE

N Z P

RUN

LD.IR IR

16

DR

LD.REG

REG
FILE

SR1
OUT

SR2
OUT 3

3

16

GateALU
LOGIC

16

LD.CC

PC

MAR

16

LD.MAR

LC-3 Data Path EA OP EX SF D

GatePC

Control Unit Processing
Unit

Memory
Unit INPUT OUTPUT

2023/10/27 25

From ENIAC to the Stored Program Computer1

Basic Components2

The LC-3: An Example von Neumann Machine 3

Instruction Processing4

Our First Program: A Multiplication Algorithm5

Summary6

Outline

Instruction

nThe instruction is the fundamental unit of work.

nSpecifies two things:

l opcode: operation to be performed

l operands: data/locations to be used for operation

nAn instruction is encoded as a sequence of bits. (Just like data!)

l Often, but not always, instructions have a fixed length, such as 16 or 32 bits.

l Control unit interprets instruction: generates sequence of control signals to

carry out operation.

l Operation is either executed completely, or not at all.

nA computer’s instructions and their formats is known as its Instruction Set Architecture

(ISA).

l Persistent ISA invented by UW grad Gene Amdahl (IBM 360)
2023/10/27 27

Example: LC-3 ADD Instruction

nLC-3 has 16-bit instructions.

lEach instruction has a four-bit opcode, bits [15:12].

nLC-3 has eight registers (R0-R7) for temporary storage.

lSources and destination of ADD are registers.

“Add the contents of R2 to the contents of R6,
and store the result in R6.”

2023/10/27 28

Example: LC-3 LDR Instruction

nLoad instruction -- reads data from memory

nBase + offset mode:

l add offset to base register -- result is memory address

l load from memory address into destination register

“Add the value 6 to the contents of R3 to form a memory
address. Load the contents stored in that address to R2.”

2023/10/27 29

Instruction Processing（State Transition）

EA

OP

EX

S

F

D

2023/10/27 30

Decode instruction

Evaluate Address

Fetch OPerands from memory

EXecute operation

Store result

Fetch instruction from memory

Instructure Cycle
(CPI)

Instruction 1
Instruction 2
Instruction 3
……
Instruction n
Instruction n+1
Instruction n+2
……

Instruction Processing: FETCH

nLoad next instruction (at address stored in PC) from memory into
Instruction Register (IR).
lLoad contents of PC into MAR.

lSend “read” signal to memory.

lRead contents of MDR, store in IR.

nThen increment PC, so that it points to the next instruction in sequence.
lPC becomes PC+1.

EA

OP

EX

S

F

D

2023/10/27 31

Instruction Processing: DECODE

nFirst identify the opcode.
lIn LC-3, this is always the first four bits of instruction.

lA 4-to-16 decoder asserts a control line corresponding to
the desired opcode.

nDepending on opcode, identify other operands from the remaining bits.
lExample:

—for ADD, last three bits is source operand #2

—for LDR, last six bits is offset

EA

OP

EX

S

F

D

Instruction Processing: EVALUATE ADDRESS

nFor instructions that require memory access, compute address used for

access.

nExamples:

ladd offset to base register (as in LDR)

ladd offset to PC (or to part of PC)

ladd offset to zero

2023/10/27 33

EA

OP

EX

S

F

D

Instruction Processing: FETCH OPERANDS

nObtain source operands needed to perform operation.

nExamples:

lread data from register file (ADD)

lload data from memory (LDR)

2023/10/27 34

EA

OP

EX

S

F

D

Instruction Processing: EXECUTE

nPerform the operation, using the source operands.

nExamples:

lsend operands to ALU and assert ADD signal

ldo nothing (e.g., for loads and stores)

2023/10/27 35

EA

OP

EX

S

F

D

Instruction Processing: STORE

nWrite results to destination. (register or memory)

nExamples:

l result of ADD is placed in destination register

l result of memory load is placed in destination register

l for store instruction, data is stored to memory

—write address to MAR, data to MDR

—assert WRITE signal to memory

2023/10/27 36

EA

OP

EX

S

F

D

Changing the Sequence of Instructions

n In the FETCH phase, we incremented the Program Counter by 1.

nWhat if we don’t want to always execute the instruction that follows this one?

lexamples: loop, if-then-else, function call

--Need special instructions that change the contents of the PC.

nThese are called jumps and branches.

l jumps are unconditional -- they always change the PC

lbranches are conditional -- they change the PC only if some

condition is true (e.g., the contents of a register is zero)

2023/10/27 37

Example: LC-3 BR Instruction

nSet the PC to the value PC+PCoffset. This becomes the address of the next

instruction to fetch.

“Load the contents of (PC + PCoffset) into the PC.”

2023/10/27 38

BR Condition PCoffset

Control of the Instruction Cycle

nThe control unit is a state machine. Here is part of a simplified state diagram for

the LC-3:

A more complete state diagram is in Appendix C.
It will be more understandable after Chapter 5.

2023/10/27 39

State1

State2 State4

State3

To State1

State5 State10

Driving Force: The Clock

nThe clock is a signal that keeps the control unit moving.

lAt each clock “tick,” control unit moves to the next machine cycle

-- may be next instruction or next phase of current instruction.

nClock generator circuit:

lBased on crystal oscillator

lGenerates regular sequence of “0” and “1” logic levels

lClock Cycle (or Machine Cycle) -- rising edge to rising edge

“1”

“0”

time®Machine
Cycle

2023/10/27 40

Halting the Computer: Stopping the Clock(by TRAP Instruction)

nControl unit will repeat instruction processing sequence as long as clock is running.

l If not processing instructions from your application, then it is processing

instructions from the Operating System (OS).

l The OS is a special program that manages processor and other resources.

2023/10/27 41

nTo stop the computer

l AND the clock generator signal with ZERO

l when control unit stops seeing the CLOCK

signal, it stops processing

From ENIAC to the Stored Program Computer1

Basic Components2

The LC-3: An Example von Neumann Machine 3

Instruction Processing4

Our First Program: A Multiplication Algorithm5

Summary6

Outline

An algorithm for 5 x 4

nWe had ADD, AND, LD, BR, HALT(TRAP)

nWe had ADD instructions, but did not have multiply

instructions. So, we do

5 x 4 =5+5+5+5

M[x3007]=5

M[x3008]=4

2023/10/27 43

A program that multiplies without a multiply instruction

Address Instruction Comments

x3000 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 R1 ¬ M[x3007]

x3001 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 R2 ¬ M[x3008]

x3002 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3 ¬ 0

x3003 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 R3 ¬ R3+R1

x3004 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 R2 ¬ R2-1

x3005 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 BR not zero M[x3003]

x3006 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT

x3007 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 The value 5

X3008 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 The value 4

2023/10/27 44

From ENIAC to the Stored Program Computer1

Basic Components2

The LC-3: An Example von Neumann Machine 3

Instruction Processing4

Our First Program: A Multiplication Algorithm5

Summary6

Outline

Von Neumann Model

2023/10/27 46

INPUT

• Keyboard
• Mouse
• Scanner
• Card reader
• Disk

MEMORY

MAR MDR

PROCESSING UNIT

ALU TEMP

PC

CONTROL UNIT

IR

OUTPUT

• Monitor
• Printer
• LED
• Disk

LC-3 Data Path

2023/10/27 47

Instruction Processing Summary

n Instructions look just like data -- it’s all interpretation.

nThree basic kinds of instructions:

lcomputational instructions (ADD, AND, …)

ldata movement instructions (LD, ST, …)

lcontrol instructions (JMP, BRnz, …)

nSix basic phases of instruction processing:

lnot all phases are needed by every instruction

lphases may take variable number of machine cycles

EA OP EX SF D

2023/10/27 48

